Bone morphogenetic protein 9 (BMP9) controls lymphatic vessel maturation and valve formation.

نویسندگان

  • Sandrine Levet
  • Delphine Ciais
  • Galina Merdzhanova
  • Christine Mallet
  • Teresa A Zimmers
  • Se-Jin Lee
  • Fabrice P Navarro
  • Isabelle Texier
  • Jean-Jacques Feige
  • Sabine Bailly
  • Daniel Vittet
چکیده

Lymphatic vessels are critical for the maintenance of tissue fluid homeostasis and their dysfunction contributes to several human diseases. The activin receptor-like kinase 1 (ALK1) is a transforming growth factor-β family type 1 receptor that is expressed on both blood and lymphatic endothelial cells (LECs). Its high-affinity ligand, bone morphogenetic protein 9 (BMP9), has been shown to be critical for retinal angiogenesis. The aim of this work was to investigate whether BMP9 could play a role in lymphatic development. We found that Bmp9 deficiency in mice causes abnormal lymphatic development. Bmp9-knockout (KO) pups presented hyperplastic mesenteric collecting vessels that maintained LYVE-1 expression. In accordance with this result, we found that BMP9 inhibited LYVE-1 expression in LECs in an ALK1-dependent manner. Bmp9-KO pups also presented a significant reduction in the number and in the maturation of mesenteric lymphatic valves at embryonic day 18.5 and at postnatal days 0 and 4. Interestingly, the expression of several genes known to be involved in valve formation (Foxc2, Connexin37, EphrinB2, and Neuropilin1) was upregulated by BMP9 in LECS. Finally, we demonstrated that Bmp9-KO neonates and adult mice had decreased lymphatic draining efficiency. These data identify BMP9 as an important extracellular regulator in the maturation of the lymphatic vascular network affecting valve development and lymphatic vessel function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BMP9-Induced Osteogenetic Differentiation and Bone Formation of Muscle-Derived Stem Cells

Efficient osteogenetic differentiation and bone formation from muscle-derived stem cells (MDSCs) should have potential clinical applications in treating nonunion fracture healing or bone defects. Here, we investigate osteogenetic differentiation ability of MDSCs induced by bone morphogenetic protein 9 (BMP9) in vitro and bone formation ability in rabbit radius defects repairing model. Rabbit's ...

متن کامل

BMP9 Induces Cord Blood-Derived Endothelial Progenitor Cell Differentiation and Ischemic Neovascularization via ALK1.

OBJECTIVE Modulating endothelial progenitor cells (EPCs) is essential for therapeutic angiogenesis, and thus various clinical trials involving EPCs are ongoing. However, the identification of environmental conditions and development of optimal methods are required to accelerate EPC-driven vasculogenesis. APPROACH AND RESULTS We evaluated gene expression profiles of cord blood-derived EPCs and...

متن کامل

Planar Cell Polarity Protein Celsr1 Regulates Endothelial Adherens Junctions and Directed Cell Rearrangements during Valve Morphogenesis

Planar cell polarity (PCP) signaling controls tissue morphogenesis by coordinating collective cell behaviors. We show a critical role for the core PCP proteins Celsr1 and Vangl2 in the complex morphogenetic process of intraluminal valve formation in lymphatic vessels. We found that valve-forming endothelial cells undergo elongation, reorientation, and collective migration into the vessel lumen ...

متن کامل

Soluble endoglin specifically binds bone morphogenetic proteins 9 and 10 via its orphan domain, inhibits blood vessel formation, and suppresses tumor growth.

Endoglin (CD105), a transmembrane protein of the transforming growth factor β superfamily, plays a crucial role in angiogenesis. Mutations in endoglin result in the vascular defect known as hereditary hemorrhagic telangiectasia (HHT1). The soluble form of endoglin was suggested to contribute to the pathogenesis of preeclampsia. To obtain further insight into its function, we cloned, expressed, ...

متن کامل

Bone morphogenetic protein 9 stimulates callus formation in osteoporotic rats during fracture healing

Fracture healing involves the coordinated actions of multiple cytokines. Bone morphogenetic protein 9 (BMP9) is an important factor in bone formation. The present study aimed to investigate the osteogenic potential of bone marrow stem cells (BMSCs) in response to adenoviral (Ad)BMP9, and the early fracture repair properties of AdBMP9 in surgically‑created fractures in osteoporotic rats. Alkalin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Blood

دوره 122 4  شماره 

صفحات  -

تاریخ انتشار 2013